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Abstract We use Chern–Weil theory for Hermitian holomorphic vector bundles with
canonical connections for explicit computation of the Chern forms of trivial bundles
with special non-diagonal Hermitian metrics. We prove that every ∂̄∂-exact real form
of the type (k, k) on an n-dimensional complex manifold X arises as a difference of the
Chern character forms of trivial Hermitian vector bundles with canonical connections,
and that modulo Im ∂ + Im ∂̄ every real form of type (k, k), k < n, arises as a Bott–
Chern form for two Hermitian metrics on some trivial vector bundle over X . The latter
result is a complex manifold analogue of Proposition 2.6 in the paper by Simons and
Sullivan (Am Math Soc 11:579–599, 2010). As an application, we obtain an explicit
formula for the Bott–Chern form of a short exact sequence of holomorphic vector
bundles considered by Bott and Chern (Acta Math 114:71–112, 1965), for the case
when the first term is a line bundle.
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1 Introduction

In [14] Simons and Sullivan constructed a simple geometric model for differential
K -theory. The model uses the notion of a structured vector bundle: a pair (V, {∇})
consisting of a complex vector bundle V over a smooth manifold X and the equivalence
class of a connection ∇. Two connections ∇0 and ∇1 are said to be equivalent if the
corresponding Chern–Simons differential form is exact. The main technical innovation
in [14] was Proposition 2.6 which states that all odd forms on X , modulo some natural
relations, arise as the Chern–Simons forms between the trivial connection and an
arbitrary connection on trivial bundles over X . It allows one to prove that differential
K -theory has a natural analogue of the celebrated character diagram for the ring of
Cheeger–Simons differential characters (see [4,13]).

For Hermitian holomorphic vector bundles—holomorphic vector bundles over the
complex manifold X with Hermitian metrics—analogues of the Chern–Simons forms
are the Bott–Chern forms, which were introduced in [3] earlier than the Chern–Simons
forms in [5]. The corresponding differential K -theory was defined by Gillet and Soulé
in [6].

In this paper we use Chern–Weil theory for Hermitian holomorphic vector bundles
with canonical connections for explicit computation of the Chern forms for trivial
bundles with special non-diagonal Hermitian metrics. Our first result is the exact
analogue of Proposition 2.6 in [14] for complex manifolds. Namely, we prove that all
real forms of type (k, k) on an n-dimensional complex manifold X , k < n, modulo
Im ∂ + Im ∂̄ , arise as Bott-Chern forms for Hermitian metrics on trivial vector bundles
over X . As in the smooth manifold case, we deduce this statement from Theorem 1,
which says that every ∂̄∂-exact real form of type (k, k) on a complex manifold X arises
as a difference of the Chern character forms on trivial Hermitian vector bundles. The
proof uses an explicit computation of Chern forms for trivial vector bundles, given
in Lemma 6. The actual computation is based on Lemma 5, which gives an explicit
formula for determinants of special matrices over a ring with nilpotents. These results
have interesting applications of their own. Thus using Lemma 5, in Proposition 3
we obtain an explicit formula for the Bott–Chern form of a short exact sequence of
holomorphic vector bundles considered by Bott and Chern in [3], for the case when
the first term is a line bundle.

Here is a more detailed content of the paper. In Sect. 2, for the convenience of the
reader, we give a brief review of [14]. Namely, we use the definition of the Chern–
Simons forms inspired by the approach of Gillet and Soulé for the complex mani-
fold case [6], and deduce a somewhat stronger analogue of Proposition 2.6 in [14]—
Corollary 2—from Proposition 1. The latter states that for every exact even form ω

on a smooth manifold X there is a trivial vector bundle V over X with a connection
∇ such that

ch(V,∇) − ch(V, d) = ω,

where d stands for the trivial connection on V . We use Corollary 2 to give a differ-
ent proof of Theorem 1.15 in [14], that does not rely on the existence of universal
connections and works for the non-compact case as well.
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In Sect. 3 we prove Theorem 1, which states that for every ∂̄∂-exact real form ω of
type (k, k) on a general complex manifold X there is a trivial vector bundle E over X
with two Hermitian metrics h1 and h2 such that

ch(E, h1) − ch(E, h2) = ω.

The proof in the general case is based on Lemma 6, where we explicitly compute
the Chern form of a trivial vector bundle over X of arbitrary rank equipped with a
special non-diagonal Hermitian metric, and on Lemma 7 where we express real forms
of type (k, k) as finite linear combinations of wedge products of real (1, 1)-forms of
special type. In turn, Lemma 6 is based on the linear algebra Lemma 5, which gives an
explicit formula for the determinants of certain matrices over a ring with nilpotents.
When X is compact or is a submanifold of C

n , we give another proof of Theorem 1
based on Lemma 8. We deduce the complex manifold analogue of Proposition 2.6 in
[14]—Corollary 5—by using the Gillet–Soulé definition of the Bott–Chern forms [6].

In Sect. 4 we present some applications of our results. In Sect. 4.1, we use Corollary 5
in order to get rid of the differential form in the complex manifold version of differential
K -theory [6]. However, developing differential K -theory for the complex manifolds
in the spirit of [14] is an open and difficult problem since, in general, ‘inverses’ for
the holomorphic bundles do not exist. In Sect. 4.2 we explicitly compute the Bott–
Chern form for the short exact sequence of Hermitian holomorphic vector bundles
considered by Bott and Chern in [3] for the case when the first term is a line bundle.
This formula can be used to simplify the computation in [10] of the Bott–Chern form
for the metrized Euler sequence of a projectivized vector bundle.

2 Complex vector bundles over a smooth manifold

2.1 Chern–Simons secondary forms

Let X be a smooth n-dimensional manifold, let

A(X) =
n⊕

k=0

Ak(X, C) = Aeven(X) ⊕ Aodd(X)

be the graded commutative algebra of smooth complex differential forms on X , and
let V be a C∞-complex vector bundle over X with a connection ∇. Recall that the
Chern character form ch(V,∇) for the pair (V,∇) is defined by

ch(V,∇) = tr

{
exp

(√−1

2π
∇2

)}
∈ Aeven(X).

Here ∇2 is the curvature of the connection ∇—an End V -valued 2-form on X—and tr
is the trace in the endomorphism bundle End V . The Chern character form is closed,

123

Author's personal copy



V. P. Pingali, L. A. Takhtajan

d ch(V,∇) = 0, and its cohomology class in H∗(X, C) does not depend on the choice
of ∇.

Let ∇0 and ∇1 be two connections on V . In [5], Chern and Simons introduced sec-
ondary characteristic forms—the Chern–Simons forms. Namely, the Chern–Simons
form cs(∇1,∇0) ∈ Aodd(X) defined modulo dAeven(X), satisfies the equation

d cs(∇1,∇0) = ch(V,∇1) − ch(V,∇0), (2.1)

and enjoys a functoriality property under the pullbacks with smooth maps.
Here we present a construction of the Chern–Simons form cs(∇1,∇0) which is

similar to the construction of Bott–Chern forms for holomorphic vector bundles given
by Gillet and Soulé in [6]. Namely, for a given V put Ṽ = π∗(V ), where π : X ×
S1 �→ X is a projection, and S1 = {eiθ , 0 ≤ θ < 2π}. For every θ define the map
iθ : X �→ X × S1 by iθ (x) = (x, eiθ ), and let ∇̃ be a connection on Ṽ such that

i∗0 (∇̃) = ∇0, i∗π (∇̃) = ∇1.

Denote by g a function defined by

g(θ) =
{

0 if 0 ≤ θ < π,

1 if π ≤ θ < 2π,

and extended 2π -periodically to R. It defines a function g : S1 �→ R, which is
discontinuous at 0 and π .

In this construction the Chern–Simons form is

cs(∇1,∇0) = π∗(g(θ)ch(Ṽ , ∇̃)) =
∫

S1

g(θ)ch(Ṽ , ∇̃) ∈ Aodd(X) (2.2)

– integration over the fibres of π .

Remark 1 Connection ∇̃ is trivial to construct. If in local coordinates ∇ i = dx +Ai (x),
where dx is deRham differential on X and i = 0, 1, then

∇̃ = dx + dθ + A(x, θ),

where A(x, θ) is 2π -periodic and A(x, 0) = A0(x), A(x, π) = A1(x).

The following lemma is proved using exactly the same technique as in [6].

Lemma 1 The Chern–Simons form cs(∇1,∇0) satisfies the Eq. (2.1), and modulo
dAeven(X) it does not depend on the choice of connection ∇̃.

Definition 1 Put

CS(∇1,∇0) = cs(∇1,∇0) mod dAeven(X),
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which, according to Lemma 1, is a well-defined element in Ãodd(X) = Aodd

(X)/dAeven(X).

Remark 2 Formula (2.2) can be written as

cs(∇1,∇0) =
2π∫

π

ch(∇̃),

and the choice of points π and 2π on the unit circle is immaterial. Using the change
of variables, for every α < β on S1 we get

cs(∇1,∇0) =
β∫

α

ch(∇̃), (2.3)

where now i∗α(∇̃) = ∇0, i∗β(∇̃) = ∇1.

Using (2.3) and Lemma 1, we immediately get

Corollary 1

CS(∇2,∇0) = CS(∇2,∇1) + CS(∇1,∇0).

2.2 K -theory

Let K0(X) be the Grothendieck group of X—the quotient of the free abelian group
generated by the isomorphism classes [V ] of complex vector bundles V over X by the
relations [V ] + [W ] = [V ⊕ W ]. In [14], the authors defined a version of differential
K -theory using the notion of a structured bundle. Namely, connections ∇0 and ∇1

on a complex vector bundle V over X are called equivalent, if CS(∇1,∇0) = 0. It
follows from Corollary 1 that it is an equivalence relation.

Definition 2 A pair V = (V, {∇}), where {∇} is an equivalence class of connections
on V , is called a structured bundle.

Denote by Struct(X) the set of all equivalence classes of structured bundles over X . It
is shown in [14] that Struct(X) is a commutative semi-ring with respect to the direct
sum ⊕ and tensor product ⊗ operations, and we denote by K̂0(X) the corresponding
Grothendieck ring.

We have two natural ring homomorphisms: the ‘forgetful map’

δ : K̂0(X) → K0(X),

given by [V] �→ [V ] for V = (V, {∇}), and the Chern character map

ch : K̂0(X) → Aeven(X),
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given by [V] �→ ch(V,∇). For a trivial bundle V with trivial connection ∇ = d,
ch(V, d) = rk(V )—the rank of V . The mapping δ is surjective and for compact X its
kernel consists of all differences [V]− [F] such that V = (V, {∇}), where V is stably
trivial, V ⊕ M = N for some trivial bundles M and N , and F = (F, {∇F }), where
F is trivial and rk(F) = rk(V ). It is an outstanding problem to describe the image of
the Chern character map.

The following result is crucial for our approach to the differential K -theory of
Simons–Sullivan [14].

Proposition 1 The image of the Chern character map contains all exact forms. Specif-
ically, for every exact even form ω there is a trivial vector bundle V = X × C

r with
a connection ∇ = d + A such that

ch(V,∇) − ch(V, d) = ω.

The proof is based on the following simple fact (see, e.g., [12, p. 16]), which is proved
by partition of unity, or by using the Whitney embedding theorem.

Lemma 2 Every η ∈ Ak(X) can be represented as a finite sum of the basic forms
f1d f2 ∧ · · · ∧ d fk+1, where f1, . . . , fk+1 are smooth functions on X. If the form η is
real, one can choose the basic forms such that all functions fi are real-valued, and if
η is zero on an open U � X, there is a representation such that all functions fi vanish
on U.

Proof of Proposition 1 Induction by the degree in dAodd(X) ⊂ Aeven(X). According
to Lemma 2, it is sufficient to consider only basic forms in Aodd(X).

For a basic 1-form α = f1d f2 we have ω = dα = d f1 ∧ d f2, so that

ch(L ,∇) − ch(L , d) = ch(L ,∇) − 1 = ω,

where L is a trivial line bundle over X with connection ∇ = d − 2π
√−1 f1d f2 and

curvature ∇2 = −2π
√−1d f1 ∧ d f2.

Now suppose that all exact forms of degree ≤2k are in the image of ch. For a basic
(2k +1)-form α = f1d f2 ∧· · ·∧d f2k+2 we have ω = dα = d f1 ∧d f2 ∧· · ·∧d f2k+2,
which can be also written as

ω = 1

(k + 1)! (d f1 ∧ d f2 + · · · + d f2k+1 ∧ d f2k+2)
k+1.

Let V be a trivial line bundle over X with

∇ = d − 2π
√−1( f1d f2 + · · · + f2k+1d f2k+2),

so that

∇2 = −2π
√−1(d f1 ∧ d f2 + · · · + d f2k+1 ∧ d f2k+2).

Then ch(V,∇) − 1 − ω is an exact form of degree ≤2k, and by induction is in the
image of ch. ��
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Remark 3 If the form ω is real then the connection ∇ in Proposition 1 is compatible
with the metric on V given by the standard Hermitian metric on C

r .

Remark 4 It immediately follows from the second statement of Lemma 2 and the
proof of Proposition 1 that if form ω vanishes on open U ⊂ X , then the connection
∇ = d + A can be chosen such that A = 0 on U .

Corollary 2 For every α ∈ Ãodd(X) there is a trivial vector bundle V with connection
∇ such that CS(∇, d) = α.

Proof For the given α ∈ Aodd(X) let Θ ∈ Aodd(X × S1) be such that under the
inclusion map iθ : X → X × S1 one has i∗π (Θ) = α and i∗θ (Θ) = 0 for all θ in some
neighborhood of 0. Applying Proposition 1 to the manifold X × S1 and the exact even
form −dΘ , we have

ch(Ṽ , ∇̃) − rk(Ṽ ) = −(dx + dθ )Θ.

Integrating over θ from π to 2π we get

α = cs(∇1,∇0) + dx

2π∫

π

Θ,

for connections ∇0 = i∗0 (∇̃) and ∇1 = i∗π (∇̃) on a trivial bundle V—a pullback of
the trivial bundle Ṽ to X . Finally, it follows from Remark 4 that one can choose the
connection ∇̃ on Ṽ such that i∗0 (∇̃)=d. Thus putting ∇ =∇1 we obtain CS(∇, d) =
α mod dAeven(X). ��
Remark 5 Corollary 2 gives a somewhat stronger form of Proposition 2.6 in [14], the
so-called “Venice lemma” of Simons.1

Corollary 2 can be used to give a different proof of Theorem 1.15 in [14], that does
not rely on the existence of universal connections and works for the non-compact case
as well.

Namely, following [14], let

StructST(X) = {[V] = [(V, {∇})] ∈ Struct(X) | V is stably trivial}

be the stably trivial sub-semigroup of Struct(X), and for [V] ∈ StructST(X) define

ĈS([V]) = CS(∇N ,∇ ⊕ ∇F ) ∈ Aodd(X)/dAeven(X),

where V ⊕ F = N with trivial bundles F and N , and ∇F , ∇N are flat connections
on these bundles. According to Proposition 2.4 in [14], for another choice of trivial

1 D. Sullivan, private communication.
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bundles F̄ and N̄ with flat connections ∇ F̄ , ∇ N̄ we have

CS(∇N ,∇ ⊕ ∇F ) − CS(∇ N̄ ,∇ ⊕ ∇ F̄ ) ∈ T (X),

where T (X) is a subgroup in Ãodd(X) consisting of CS(∇,∇′) for all trivial bundles
F and flat connections ∇, ∇′ on F . Therefore, the mapping ĈS : StructST(X) →
Ãodd(X)/T (X) is a well-defined homomorphism of semigroups.

According to Corollary 2 the map ĈS is surjective, and according to Proposition
2.5 in [14], ker ĈS = StructSF(X)—the subgroup of stably flat structured bundles. By
definition, [V] ∈ StructST(X) is stably flat if

V ⊕ F = N ,

where F = (F, {∇F }) and N = (N , {∇N }) are trivial bundles with equiva-
lence classes of flat connections. Since map ĈS is onto and Ãodd(X)/T (X) is
a group, for every [V] ∈ StructST(X) there is [W] ∈ StructST(X) such that
[V] + [W] ∈ StructSF(X). This introduces a group structure on the coset space
StructST(X)/StructSF(X), and we arrive at the following statement.

Proposition 2 The map ĈS induces a group isomorphism

ĈS : StructST(X)/StructSF(X) → Ãodd(X)/T (X).

We obtain Theorem 1.15 in [14] as an immediate corollary of this result.

Corollary 3 Every structured bundle over X has a structured inverse, i.e., for every
[V] = [(V, {∇})] ∈ Struct(X) there is [W] = [(W, {∇W })] ∈ Struct(X) such that

[V] + [W] = [N ],

where N = (N , {∇N }) is a trivial bundle with flat connection.

Proof For [V] = [(V, {∇})] ∈ Struct(X) let U be such that V ⊕ U = F—a trivial
bundle over X . Then [F] = [(F, {∇ ⊕ ∇U })] ∈ StructST(X) for any choice of con-
nection ∇U on U . By Proposition 2, there exists [H] = [(H, {∇H })] ∈ StructST(X)

such that [F] + [H] ∈ StructSF(X), i.e., there are trivial bundles M and N with flat
connections ∇M and ∇N such that F ⊕ H ⊕ M = N . Putting

W = (U ⊕ H ⊕ M, {∇U ⊕ ∇H ⊕ ∇M }),

we obtain [V] + [W] = [N ]. ��

Using Corollary 3 we conclude that all results in [14] hold for the non-compact case
as well.
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3 Holomorphic vector bundles over a complex manifold

3.1 Chern–Weil theory

Let (E, h) be a holomorphic Hermitian vector bundle—a holomorphic vector bundle
of rank r over a complex manifold X , dimC X = n, with a Hermitian metric h.
In what follows we always use a local trivialization of E—an open cover {Uα}α∈A

of X and holomorphic transition functions gαβ : Uα ∩ Uβ → GL(r, C), satisfying
the cocycle condition. In these terms, a Hermitian metric h on E is the collection
h = {hα}α∈A, where hα are positive-definite Hermitian r × r matrix-valued functions
on Uα , satisfying

hβ = g∗
αβhαgαβ on Uα ∩ Uβ,

and g∗ stands for the Hermitian conjugation.
Denote by ∇ the canonical connection on the holomorphic Hermitian bundle (E, h).

In terms of a local trivialization it is given by the collection ∇ = {∇α}α∈A,

∇α = d + Aα = ∂ + ∂̄ + A1,0
α + A0,1

α ,

where A0,1
α = 0 and A1,0

α = h−1
α ∂hα are r × r matrix-valued (1, 0)-forms on Uα ,

satisfying

Aβ = g−1
αβ Aαgαβ + g−1

αβ ∂gαβ on Uα ∩ Uβ.

The curvature of the canonical connection ∇ = d+ A is a collection Θ = {Θα}α∈A,
where Θα = ∂̄ Aα are r × r matrix-valued (1, 1)-forms on Uα , satisfying

Θβ = g−1
αβ Θαgαβ on Uα ∩ Uβ. (3.1)

Chern–Weil theory associates to any polynomial Φ on GL(r, C), invariant under conju-
gation, a collection {Φ(Θα)}α∈A which, according to (3.1), defines a global differential
form Φ(Θ) on X . Special cases of this construction are the total Chern form c(E, h),
the Chern character form ch(E, h), and the Todd form td(E, h) of a holomorphic
Hermitian vector bundle (E, h), which are respectively defined by

c(E, h) = det

(
I +

√−1

2π
Θ

)
=

r∑

k=0

ck(E, h),

ch(E, h) = tr

{
exp

(√−1

2π
Θ

)}
=

n∑

k=0

chk(E, h),
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and

td(E, h) = det

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−1

2π
Θ

1 − exp

(
−

√−1

2π
Θ

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= 1 +
r∑

k=1

tdk(E, h).

These differential forms are ∂ and ∂̄ closed.
For a holomorphic Hermitian bundle (E, h) denote by (E∗, h∗) the dual bundle

E∗ with the induced metric h∗ = (h−1)t , and by (Λl E∗,∧l h∗)—corresponding l-th
exterior powers of the bundle (E∗, h∗) with Hermitian metrics ∧l h∗, induced by the
metric h∗. The following formula provides a relation between Chern character forms
and Todd forms, which promotes the well-known result for the cohomology classes
(see [8, Theorem 10.1.1]) to the level of forms.

Lemma 3 Let (E, h) be a holomorphic Hermitian vector bundle of rank r with the
metric h. Then the following identity holds

r∑

l=0

(−1)lch(Λl E∗,∧l h∗) = td(E, h)−1cr (E, h).

Proof Consider the universal identity

det(I − A) =
r∑

l=0

(−1)l tr(∧l A),

which holds for every r × r matrix A over a commutative ring (see, e.g., [7, p. 402]).
Rewriting it as

r∑

l=0

(−1)l tr(∧l A) = det A det

(
I − A

A

)
,

and replacing A by exp(−
√−1
2π

Θ), where Θ is the curvature of the canonical connec-
tion on (E, h), we get

r∑

l=0

(−1)l tr

{
Λl exp

(
−

√−1

2π
Θ

)}
= cr (E, h) td(E, h)−1.

It remains to prove that ch(Λl E∗) = tr(Λl exp(−
√−1
2π

Θ)). For this aim, consider the
short exact sequence

0 → Λl E∗ → ⊗l E∗ → Q → 0,
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where Q is the quotient vector bundle. The bundle ⊗l E∗ splits holomorphically
into direct sum of orthogonal subbundles because there is a canonical section Alt :
⊗l E∗ → Λl E∗ which maps a tensor to its totally antisymmetric part. It induces a
map from End(⊗l E∗) to End(Λl E∗), which we continue to denote by Alt. We have
ΘΛl E∗ = Alt(Θ⊗l E∗), which implies

ch(Λl E∗) = tr

{
exp

(√−1

2π
ΘΛl E∗

)}

= tr

{
Alt exp

(
−

√−1

2π

l∑

k=1

Θk

)}
= tr

{
Λl exp

(
−

√−1

2π
Θ

)}
,

where Θk = I ⊗ · · · ⊗ I ⊗ Θ ⊗ I ⊗ · · · ⊗ I , with Θ being the k-factor of the l-fold
tensor product. ��

3.2 Bott–Chern secondary forms

Let h1 and h2 be two Hermitian metrics on a holomorphic vector bundle E over a
complex manifold X . In the classic paper [3], Bott and Chern showed the existence
of certain secondary characteristic forms. Their construction of these so-called Bott–
Chern forms was generalized by Bismut, Gillet, and Soulé [2]. The Bott–Chern form
associated to an invariant polynomial Φ is an even differential form Φ̃(E; h1, h2) ∈
Ã(X, C) = A(X, C)/(Im ∂ + Im ∂̄), satisfying

Φ(E, h2) − Φ(E, h1) =
√−1

2π
∂̄∂ Φ̃(E; h1, h2) (3.2)

and the functorial property

Φ̃( f ∗(E), f ∗(h1), f ∗(h2)) = f ∗(Φ̃(E; h1, h2)) (3.3)

for holomorphic maps f : Y → X of complex manifolds. In [3] these forms were also
defined for short exact sequences of hermitian holomorphic vector bundles. Namely,
let E

0 −−−−→ F
i−−−−→ E

p−−−−→ H −−−−→ 0

be such an exact sequence, where holomorphic bundles F, E and H are equipped
with Hermitian metrics hF , hE and hH . Similar to (3.2), the Bott–Chern form for an
invariant polynomial Φ satisfies the equation

Φ(E, hE ) − Φ(F ⊕ H, hF ⊕ hH ) =
√−1

2π
∂̄∂ Φ̃(E ; hE , hF , hH ),

and the functorial property. It vanishes when the exact sequence E holomorphically
splits and hE = hF ⊕ hH .
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For polynomials Φ corresponding to the Chern character form ch and total Chern
form c, we denote, respectively, the corresponding Bott–Chern forms by bc and c̃.

Remark 6 In the smooth manifold case, for linear homotopy of connections ∇t , it
possible to integrate over t in the homotopy formula and obtain explicit formulas for
the Chern–Simons forms (see, e.g., equation (2.1) in [14]). In the complex manifold
case the situation is more complicated. It is already mentioned in the remark in [3, Sect.
3] that even for a linear homotopy ht of Hermitian metrics, the homotopy formula in
Proposition 3.15 in [3] contains the inverse metrics through Θt = ∂̄(h−1

t ∂ht ), which
does not allow to integrate over t in a closed form. As the result, it is difficult to get
explicit formulas for the Bott–Chern forms in terms of Hermitian metrics h1 and h2
only.

In [6], Gillet and Soulé gave a construction of the Bott–Chern secondary classes
which is also well-suited for short exact sequences of holomorphic vector bundles over
X , which are used for defining the K -theory of X . Namely, let E be a holomorphic
vector bundle over X with Hermitian metrics h1 and h2, let O(1) be the standard
holomorphic line bundle of degree 1 over the complex projective line P

1, and let
Ẽ = E ⊗O(1) be the corresponding vector bundle over X ×P

1. If i p : X → X ×CP1

is the natural inclusion map i p(x) = (x, p) then i∗p(Ẽ) � E for all p ∈ P
1. Let h̃

be a Hermitian metric on Ẽ such that i∗0 (h̃) = h1 and i∗∞(h̃) = h2 (such a metric is
constructed using a partition of unity).

In this construction, the Bott–Chern secondary form for the Chern character is

bc(E; h1, h2) =
∫

P1

ch(Ẽ, h̃) log |z|2. (3.4)

The integral is convergent since log |z|2ω(z), where ω is any smooth (1, 1)-form on
P

1, is integrable.

Lemma 4 (H. Gillet and C. Soulé) The Bott–Chern form bc(E; h1, h2) satisfies equa-
tions (3.2) and (3.3), and modulo Im ∂ + Im ∂̄ does not depend on the choice of
Hermitian metric h̃.

The proof given in [2, Section f)] uses the current equation

√−1

2π
∂̄∂ log |z|2 = δ∞ − δ0,

and the proof of Lemma 1 uses a simplified version of this argument. As in the previous
section, we put

BC(E; h1, h2) = bc(E; h1, h2) mod(Im ∂ + Im ∂̄).

Remark 7 Note that formula (3.4) the for Bott–Chern forms uses the Green function
log |z|2 of the Laplace operator on P

1, whereas formula (2.2) for the Chern-Simons

form uses the Green function g(θ) of the operator
d

dθ
on S1.
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3.3 Chern forms of trivial bundles

In what follows if a is a nilpotent element of order r of a commutative ring, then by
definition − log(1 − a) = a + a2

2 + · · · + ar−1

r−1 and 1
1−a = 1 + a + a2 + · · · + ar−1.

We start with the following simple linear algebra result.

Lemma 5 Let A be a matrix over C or over a commutative algebra A over C, where
in the latter case all its matrix elements are nilpotent. Suppose that A2 = a A for some
a ∈ A, and that 1 − λa is invertible for all λ in some domain D ⊂ C containing 0.
Then for such λ we have

(I − λA)−1 = I + λ

1 − λa
A,

and

det(I − λA) = exp

{
tr A

a
log(1 − λa)

}
.

In particular, if αi , βi , i = 1, . . . , k, are odd elements in some graded-commutative
algebra over C (e.g., the algebra of complex differential forms on X), and Ai j = αiβ j ,
then A2 = a A where a = − tr A = −∑k

i=1 αiβi , and

det(I − λA) = 1

1 − λa
.

Proof For λ ∈ D we have

(I − λA)−1 = I + λ

1 − λa
A.

To prove the formula for the determinant, we use the identity

d

dλ
log det(I − λA) = − tr

{
A(I − λA)−1

}
, λ ∈ D.

It is well-known for matrices over C (and easily proven using the Jordan canonical
form), and for matrices with nilpotent entries it easily follows the definition of the
determinant. Using formula for the inverse, we obtain

d

dλ
log det(I − λA) = − tr A

1 − λa
= d

dλ

tr A

a
log(1 − λa),

and integrating from 0 to λ using det I = 1 gives the result. ��
Remark 8 For matrices over C equation A2 = a A implies that all eigenvalues of A
are either 0 or a, so in this case

det(I − λA) = (1 − λa)m, m ≥ 0.
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The next result is an explicit computation of the total Chern form of a trivial vector
bundle with a special non-diagonal Hermitian metric.

Lemma 6 Let Er = X ×C
r be a trivial rank r vector bundle over X with a Hermitian

metric h given by

h = h(σ, f1, . . . , fr−1) = g∗g, where g =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 f̄1

0 1 0 . . . 0 f̄2

0 0 1 . . . 0 f̄3
...

...
...

. . .
...

...

0 0 0 . . . 1 f̄r−1

0 0 0 . . . 0 eσ/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and f1, . . . , fr−1 ∈ C∞(X, C), σ ∈ C∞(X, R). Then

c(Er , h) = c(E1, eσ ) +
√−1

2π
∂̄∂ log

(
1 −

√−1

2π
U

)
,

where U = e−σ
∑r−1

i=1 ∂ fi ∧ ∂̄ f̄i and E1 = det Er is a trivial line bundle over X.
Equivalently,

c1(Er , h) =
√−1

2π
∂̄∂σ, ck(Er , h) = − 1

k − 1

(√−1

2π

)k

∂̄∂ U k−1, k = 2, . . . , r.

Proof We compute the total Chern form c(Er , h) by a direct calculation which uses
Lemma 5. Let Θ = ∂̄(h−1∂h) be the curvature form associated with the Hermitian
metric h. We need to prove that for every λ ∈ C,

det(I + λΘ) = 1 + λ∂̄∂σ + λ∂̄∂ log(1 − λU )

= 1 + λ∂̄∂σ − λ2 ∂̄∂U

1 − λU
− λ3 ∂̄U ∧ ∂U

(1 − λU )2 ,

where

1

1 − λU
=

r−1∑

k=0

λkU k and
1

(1 − λU )2 =
r−1∑

k=0

(k + 1)λkU k .

It is convenient to represent the matrix I + λΘ in the following block form

I + λΘ =
(

I + λΘ11 λΘ12
λΘ21 1 + λΘ22

)
,
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where (r − 1) × (r − 1) matrix Θ11, (r − 1)-vectors Θ12,Θ
t
21, and the scalar Θ22 are

given by

Θ11 = {−∂̄( f̄i e
−σ ∂ f j )

}r−1
i, j=1 , Θ12 = {

∂̄∂ f̄i − ∂̄( f̄i F) − ∂̄( f̄i∂σ)
}r−1

i=1 ,

Θ t
21 = {

∂̄(e−σ ∂ fi )
}r−1

i=1 , Θ22 = ∂̄∂σ + ∂̄ F,

and F = e−σ
∑r−1

l=1 f̄l∂ fl . The row operations Ri �→ Ri + f̄i Rr transform the matrix
I + λΘ to the form

(
I − λA b

c d

)
,

where

A = {
e−σ ∂̄ f̄i ∧ ∂ f j

}r−1
i, j=1 , b = {

f̄i + λ(∂̄∂ f̄i − ∂̄ f̄i ∧ F − ∂̄ f̄i ∧ ∂σ)
}r−1

i=1 ,

and we put c = λΘ21, d = 1 + λΘ22.
Now it follows from the representation

(
I − λA b

c d

)
=

(
I b

c(I − λA)−1 d

)(
I − λA 0

0 1

)

that

det(I + λΘ) = det(I − λA)
(

d − c(I − λA)−1b
)

,

which we compute explicitly using Lemma 5. Namely,

det(I + λΘ) = 1

1 − λU

(
1 + λ(∂̄∂σ + ∂̄ F)

−
r−1∑

i, j=1

λ∂̄(e−σ ∂ fi ) ∧
(
δi j + λe−σ ∂̄ f̄i ∧ ∂ f j

1 − λU

)

∧( f̄ j + λ(∂̄∂ f̄ j − ∂̄ f̄ j ∧ (F + ∂σ))

)
.

Using equations

∂̄ F = −U − ∂̄σ ∧ F + e−σ
r−1∑

i=1

f̄i ∂̄∂ fi ,

123

Author's personal copy



V. P. Pingali, L. A. Takhtajan

and

∂U = −∂σ ∧ U + Ψ+, ∂̄U = −∂̄σ ∧ U + Ψ−,

∂̄∂U = −∂̄∂σ ∧ U + ∂̄σ ∧ ∂σ ∧ U + ∂σ ∧ Ψ− − ∂̄σ ∧ Ψ+ + Φ,

where

Ψ+ = e−σ
r−1∑

i=1

∂ fi ∧ ∂̄∂ f̄i , Ψ− = e−σ
r−1∑

i=1

∂̄∂ fi ∧ ∂̄ f̄i , Φ = e−σ
r−1∑

i=1

∂̄∂ fi ∧ ∂̄∂ f̄i ,

and simplifying, we obtain

det(I + λΘ) = 1 + λ

1 − λU

(
∂̄∂σ − λΦ + λ∂̄σ ∧ Ψ+ − λ∂̄σ ∧ U ∧ F + λΨ− ∧ F

−λ∂̄σ ∧ ∂σ ∧ U +λΨ−∧ ∂σ − λ

1−λU

(
−∂̄σ ∧ U ∧ F +Ψ− ∧ F

+λ∂̄σ ∧ ∂σ ∧ U ∧ U +λΨ−∧ Ψ+−λΨ−∧ U ∧ F −λΨ−∧ U ∧ ∂σ

− λ∂̄σ ∧ U ∧ Ψ+ + λ∂̄σ ∧ U ∧ U ∧ F
))

=1+ λ

1−λU

(
∂̄∂σ +λ(−Φ+∂̄σ ∧ Ψ+−∂̄σ ∧ ∂σ ∧ U +Ψ− ∧ ∂σ)

)

− λ3 ∂̄U ∧ ∂U

(1 − λU )2 = 1 + λ∂̄∂σ − λ2 ∂̄∂U

1 − λU
− λ3 ∂̄U ∧ ∂U

(1 − λU )2 .

��
Remark 9 Following the suggestion of the referee, here we give a more invariant proof
of Lemma 6. Namely, the bundle (Er , h) is a metric extension of the bundle (Er−1, I )
with the flat metric I by the line bundle (E1, eσ ) with the metric eσ . Dualizing, we
obtain the following short exact sequence

0 −−−−→ E∗
1

i−−−−→ E∗
r

p−−−−→ E∗
r−1 −−−−→ 0

of Hermitian vector bundles. Applying Proposition 3 in Sect. 4.2 to this sequence and
putting t = −1 we immediately get Lemma 6. Indeed, in this case ΘH = 0 and an
easy computation of the second fundamental form of E∗

1 in E∗
r gives the result.

Corollary 4 The following identities hold for k = 0, . . . , r ,

r∑

l=0

(−1)l chk(Λ
l E∗

r ) = − δkr

r − 1

(√−1

2π

)r

∂̄∂
(
Ur−1)

= −(r −2)!δkr

(√−1

2π

)r

∂̄∂
(

e(r−1)σ ∂ f1 ∧ ∂̄ f̄1 ∧ · · · ∧ ∂ fr−1 ∧ ∂̄ f̄r−1

)
.
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Proof Immediately follows from Lemmas 3 and 6. ��
Remark 10 For the rank 2 trivial vector bundle E2 with the Hermitian metric

h = h(σ, f ) =
(

1 f̄
f | f |2 + eσ

)
=

(
1 0
f eσ/2

)(
1 f̄
0 eσ/2

)
.

the main identity in the Corollary 4 takes the form

ch2(E2, h(σ, f )) − ch2(E1, eσ ) = − 1

(2π)2 ∂̄∂(e−σ ∂ f ∧ ∂̄ f̄ ),

and can be verified by a straightforward computation. For the bundles of ranks 3 and
4 corresponding identities were first verified using special Mathematica package for
computing Chern character forms, written by Michael Movshev. Here we prove these
identities.

Remark 11 The Bott–Chern forms have been already used by physicists in their study
of supersymmetric quantum field theories. Thus setting θ̄ = h−1∂̄h, it is easy to obtain

tr(θ ∧ θ̄ ) = e−σ ∂ f ∧ ∂̄ f̄ + e−σ ∂ f̄ ∧ ∂̄ f.

To get rid of the second term and to write down the simplest nontrivial Bott–Chern
form bc1(h, I ), where I is a trivial Hermitian metric on E2, we need to add the
“Wess-Zumino term” (rather its (1, 1)-component) to the “kinetic term” tr(θ ∧ θ̄ ).
Such formula was first obtained by Alekseev and Shatashvili in [1], where for the case
of the Minkowski signature the decomposition

(
1 f̄
f | f |2 + eσ

)
=

(
1 0
f 1

)(
1 0
0 eσ

)(
1 f̄
0 1

)

is replaced by the Gauss decomposition for SL(2, C).
The Bott–Chern forms (or rather their exponents) also appear quite naturally in

supersymmetric quantum field theories as ratios of non-chiral partition functions for
the higher dimensional versions of the so-called bc-systems [9].

3.4 The main result

The first result is an analogue of Lemma 2 for general complex manifolds.

Lemma 7 Let X be a complex manifold. Every ω ∈ Ak,k(X, C) ∩ A2k(X, R) can be
written as a finite linear combination over R of wedge products of real (1, 1)-forms
of the type

√−1 eσ ∂ f ∧ ∂̄ f̄ , where σ ∈ C∞(X, R) and f ∈ C∞(X, C). Moreover, if
ω is zero on open U ⊂ X, than one can choose these forms such that all functions σ

and f vanish on U.
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Proof Let ω be a real form of type (k, k). According to Lemma 2, it is a finite sum of
the terms

h0dh1 ∧ dh2 ∧ · · · ∧ dh2k = h0(∂ + ∂̄)h1 ∧ (∂ + ∂̄)h2 ∧ · · · ∧ (∂ + ∂̄)h2k,

where h0, . . . , h2k are smooth real-valued functions on X with h0 > 0. Notice that any
smooth function h0 can be written as the difference of two smooth positive functions
h0 = e(h0)

2 +h0−e(h0)2
. Since ω is of type (k, k), it is a finite sum of (k, k)-components

of the forms above. Every such component is a function times the wedge product of
the following factors (where h and g are some of the hi ’s)

∂h ∧ ∂̄g + ∂̄h ∧ ∂g = √−1(∂ f ∧ ∂̄ f̄ − ∂h ∧ ∂̄h − ∂g ∧ ∂̄g),

where f = h + √−1g. ��
For compact complex manifolds (or rather for manifolds admitting a finite coordi-

nate open cover) and for submanifolds of C
n , there is a different version of Lemma 7.

Lemma 8 Let X be a compact complex manifold or a submanifold of C
n. Every

ω ∈ Ak,k(X, C) ∩ A2k(X, R) can be written as a finite linear combination of wedge
products of real (1, 1)-forms of the type

√−1 h∂̄∂ρ where h and ρ are smooth real
functions on X.

Proof Let {Uα}α∈A be a finite coordinate open cover of X and {ρα}α∈A be a partition
of unity subordinate to it, so that ω = ∑

α∈A ρα ω|Uα
. Denoting by

z1 = x1 + √−1 y1, . . . , zn = xn + √−1 yn

local complex coordinates in Uα , we can write

ω|Uα
=

∑

I,J

fα,I J dxi1 ∧ · · · ∧ dxil ∧ dy j1 ∧ · · · ∧ dy jm ,

where I = {i1, . . . , il}, J = { j1, . . . , jm}, fα,I J ∈ C∞(Uα, R) and 1 ≤ i1 < · · · <

il ≤ n, 1 ≤ j1 < · · · < jm ≤ n, l + m = 2k. Since the form ω was supposed to be of
(k, k) type, so are the forms ω|Uα

. On the other hand, the (k, k)-component of these
forms can be obtained by rewriting them in complex coordinates using

dxi = 1

2
(dzi + dz̄i ), dyi = 1

2
√−1

(dzi − dz̄i ), i = 1, . . . , n,

and collecting terms of the type (k, k). If one of such terms has a factor dzi ∧ dz̄l ,
i, k ∈ I , then it necessarily has a factor

(dzi ∧ dz̄l + dz̄i ∧ dzl),
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if it comes from dxi ∧ dxl . Similarly, one has factors (dz j ∧ dz̄m + dz̄ j ∧ dzm),
j, m ∈ J , coming from dy j ∧ dym , and

√−1(dzi ∧ dz̄ j − dz̄i ∧ dz j ), coming from
dxi ∧ dy j , i ∈ I and j ∈ J .

In the first two cases the corresponding factors can be written as

2
√−1∂∂̄(Im(zi z̄l)) and 2

√−1∂∂̄(Im(z j z̄m)),

whereas in the third case it takes the form 2
√−1∂∂̄(Re(zi z̄ j )). Let Kα be a compact

set such that supp ρα � Kα ⊂ Uα and let bα be a corresponding “bump function”
— a smooth function on X which is 1 on supp ρα and zero outside Kα . Then we
see that all the terms will take the form 2

√−1∂∂̄ρ, where ρ(z) = Im(bα(z)zi z̄ j )

or ρ(z) = Re(bα(z)zi z̄ j ). This proves the first part of the statement. The second
statement of the lemma is obvious from the construction. For submanifolds of C

n , the
local part of the argument above carries over globally by extension of the quantities
involved to a tubular neighborhood. ��
Remark 12 Let ω be a real differential form of pure type on a complex manifold
X , ω ∈ Ak,k(X, C) ∩ A2k(X, R). We call the form ω elementary, if it is a wedge
product of (1, 1)-forms

√−1 h∂̄∂ρ with real-valued h and ρ, and we call the form
ω composite, if it is a wedge product of (1, 1)-forms

√−1 eσ ∂ f ∧ ∂̄ f̄ . According
to Lemmas 7 and 8, on a compact complex manifold X every composite form is a
finite linear combination of elementary forms and conversely, every elementary form
is a finite linear combination of composite forms. This is reminiscent of the “nuclear
democracy” in the bootstrap model of the S-matrix theory in particle physics.

We have the following complex manifold analogue of Proposition 1.

Theorem 1 For every ∂̄∂-exact form ω ∈ A(X, C) ∩ Aeven(X, R) on a complex
manifold X there is a trivial vector bundle E over X with two Hermitian metrics h1
and h2 such that

ch(E, h1) − ch(E, h2) = ω.

Proof It is convenient to introduce a virtual Hermitian bundle E = E − E with
corresponding Hermitian metrics h1 and h2, and to rewrite the above equation as
ch E = ω. The Chern character form defined this way for virtual Hermitian bundles
is obviously additive: if W1 = W1 − W1 with Hermitian metrics h11 and h12, and
W2 = W2 − W2 with Hermitian metrics h21 and h22, then

ch W1 + ch W2 = ch W,

where W = W − W and W = W1 ⊕ W2 with corresponding Hermitian metrics
h1 = h11 ⊕ h21 and h2 = h12 ⊕ h22. Slightly abusing notations, we will write
W = W1 ⊕ W2. The Chern character form for virtual Hermitian bundles is also
multiplicative:

ch W1 ch W2 = ch W,
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where W = W −W and W = (W1 ⊗W2)⊕(W1 ⊗W2) with corresponding Hermitian
metrics

h1 = (h11 ⊗ h21) ⊕ (h12 ⊗ h22) and h2 = (h11 ⊗ h22) ⊕ (h12 ⊗ h21).

Slightly abusing notations, we will write W = W1 ⊗ W2.
Let ω be a real form of degree (k, k), k > 12 which is a ∂̄∂ of a composite form:

ω =−(k − 2)!
(√−1

2π

)k

∂̄∂
(

e(k−1)σ ∂ f1 ∧ ∂̄ f̄1 ∧ · · · ∧ ∂ fk−1 ∧ ∂̄ f̄k−1

)
. (3.5)

It follows from Corollary 4 that

ω = chkFk and chiFk = 0, i = 1, . . . , k − 1, (3.6)

where the virtual bundle Fk is

Fk =
k⊕

l=0

(−1)lΛl E∗
k

with the naturally induced Hermitian metric.
In particular, if ω is a composite form of the top degree (n, n), then

ω = ch Fn .

Now, we may use an induction argument to finish the proof. Namely, suppose that the
statement holds for all forms of degrees (l, l), k < l ≤ n, and let ω be a composite
(k, k)-form given by (3.5). According to (3.6), ω− ch Fk is a sum of forms of degrees
(l, l) with l > k, so that by the induction hypothesis there exists a virtual Hermitian
bundle F such that ω − ch Fk = ch F . Thus

ω = ch E, where E = Fk ⊕ F .

For a general ∂̄∂-exact form ω of degree (k, k) we have

ω = ω1 + · · · + ωm − ωm+1 − · · · − ωN ,

where ωi are composite forms, so that

ω = ch E where E = (E1 ⊕ · · · ⊕ Em) − (Em+1 ⊕ · · · ⊕ EN ).

��

2 For k = 1, we may use a trivial line bundle with metric eσ .
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Remark 13 When X is compact or is a submanifold of C
n , we can give another proof

using Lemma 8. Firstly, the statement holds for (1, 1)-forms. Namely, since every real

∂̄∂-exact (1, 1)-form is given by ω =
√−1
2π

∂̄∂σ , where σ ∈ C∞(X, R), consider the
trivial holomorphic line bundle E1 with the Hermitian metric h = eσ , so that

ch(E1, h) = exp ω = 1 + ω + 1

2
ω2 + · · · + 1

n!ω
n .

To get rid of all terms in this expression except ω, consider Hermitian metrics eαi σ ,
i = 1, . . . , n + 1, and choose pairwise distinct αi such that the following system of
equations

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
α1 α2 α3 . . . αn+1

α2
1 α2

2 α2
3 . . . α2

n+1
...

...
...

...
...

αn
1 αn

2 αn
3 . . . αn

n+1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

r1
r2
r3
...

rn+1

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

0
1
0
...

0

⎞

⎟⎟⎟⎟⎟⎠

has an integer solution r1, . . . , rn+1. Namely, for any choice of n +1 different rational
numbers αi numbers ri are also rational. If their least common denominator is N > 1,
then for βi = αi/N the corresponding solution is integral. Now putting

(E, h1) =
⊕

ri >0

ri (E1, eβi σ ) and (E, h2) =
⊕

ri <0

(−ri )(E1, eβi σ ),

where n(L , h) stands for the direct sum of n copies of a line bundle L with the
Hermitian metric h, we get

ch(E, h1) − ch(E, h2) = ω.

Now let ω be a real form of degree (k, k) which is a ∂̄∂ of an elementary form:

ω =
(√−1

2π

)k

∂̄∂
(
ρ1∂̄∂ρ2 ∧ · · · ∧ ∂̄∂ρk

) =
(√−1

2π

)k

∂̄∂ρ1 ∧ ∂̄∂ρ2 ∧ · · · ∧ ∂̄∂ρk .

Then

ω = ch E, where E = E1 ⊗ · · · ⊗ Ek .

For general non-elementary forms, the result follows by means of a linear combination.

Remark 14 It immediately follows from the second statement of Lemma 7 and the
proof of Theorem 1, that if form ω vanishes on open U ⊂ X , then Hermitian metrics
h1 and h2 can be chosen such that h1 = h2 = I —identity matrix—on U .
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Corollary 5 For every ω ∈ A(X, C)∩Aeven(X, R) of degree not greater than 2n−2,
there is a trivial vector bundle E over X with two Hermitian metrics h1 and h2 such
that in Ã(X, C)

BC(E; h1, h2) = ω.

Proof It is analogous to the proof of Corollary 2. Namely, let Ω ∈ A(X × P
1, C) ∩

Aeven(X × P
1, R) be such that under the inclusion map i p : X → X × P

1 one has
i∗∞(Ω) = −ω and i∗0 (Ω) = 0 in some neighborhood of 0 in P

1. It follows from
Theorem 1 that there is a trivial vector bundle Ẽ over X × P

1 with two Hermitian
metrics h̃1 and h̃2 such that

√−1

2π
∂̄∂Ω = ch(Ẽ, h̃1) − ch(Ẽ, h̃2),

where the metrics h̃1 and h̃2 can be chosen such that i∗0 (h̃1) = i∗0 (h̃2) = I . Denoting
by E a trivial vector bundle over X—a pullback of Ẽ—and putting h1 = i∗∞(h̃1), h2 =
i∗∞(h̃2), we obtain, modulo Im ∂ + Im ∂̄ ,

bc(E; I, h1) − bc(E; I, h2) =
∫

P1

√−1

2π
∂̄∂ Ω log |z|2

=
∫

P1

√−1

2π
∂̄z∂zΩ log |z|2

=
∫

P1

√−1

2π
Ω ∂̄z∂z log |z|2

= i∗∞(Ω) − i∗0 (Ω)

= −ω.

Therefore in Ã(X, C),

ω = −BC(E; I, h1) + BC(E; I, h2) = BC(E; h1, h2).

��
4 Applications

In this section we describe some applications of Lemma 5 and Corollary 5.

4.1 Differential K -theory

Recall that according to the definition of differential K -theory in [6], the K -group
K̂0(X) for a complex manifold X is defined as the free abelian group generated by
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the triples (E, h, η), where E is a holomorphic vector bundle over X with Hermitian
metric h and η ∈ Ã(X, C), with the following relations. For every exact sequence E

0 −−−−→ F
i−−−−→ E

p−−−−→ H −−−−→ 0

of holomorphic vector bundles over X , endowed with arbitrary Hermitian metrics
hF , hE and hH , impose

(F, hF , η′) + (H, hH , η′′) = (E, hE , η′ + η′′ + BC(E , hE , hF , hH )), (4.1)

where BC(E , hE , hF , hH ) = bc(E , hE , hF , hH ) mod (Im ∂ + Im ∂̄). It follows from
(4.1) that in K̂0(X)

(E, h1, η1) = (E, h2, η1 + BC(E, h1, h2)). (4.2)

Now following [14], we define two Hermitian metrics h1 and h2 on the holomorphic
vector bundle E to be equivalent, if BC(E, h1, h2) = 0, and define a structured
holomorphic Hermitian vector bundle E as a pair (E, {h}), where {h} is the equivalence
class of a Hermitian metric h. Our goal is to impose relations on the free abelian group
generated by E such that the resulting group H K̂0(X) is isomorphic to the “reduced”
differential K -theory group K̂ rd

0 (X) - a subgroup of K̂0(X) with forms η of degrees
not greater than 2n − 2.

First we observe that it follows from (4.2) that the mapping

E = (E, {h}) �→ ε(E) = (E, h, 0) ∈ K̂ rd
0 (X) (4.3)

is well-defined. Next we show that when extended to to the free abelian group generated
by the structured holomorphic Hermitian bundles, this mapping is onto. Indeed, for
every η ∈ Ã(X, C)∩ Aeven(X, R) of degree not greater than 2n −2, let F be the trivial
vector bundle over X with two Hermitian metrics h1 and h2 such that, according to
Corollary 5,

(F, h1, η) = (F, h2, 0).

in K̂0(X). Since

(E ⊕ F, h ⊕ h1, η) = (E, h, 0) + (F, h1, η)

= (E, h, η) + (F, h1, 0),

we obtain

(E, h, η) = (E, h, 0) + (F, h2, 0) − (F, h1, 0).

Finally, we define the group H K̂0(X) as the quotient of the free abelian group generated
by E modulo the relations—pullbacks of the defining relations for K̂ rd

0 (X) by the
mapping ε. Explicitly, for every exact sequence E of holomorphic vector bundles over
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X with Hermitian metrics hF , hE and hH satisfying BC(E ; hE , hF , hH ) = 0, we
impose

(F, {hF }) + (H, {hH }) = (E, {hE }).

Remark 15 The construction of the group H K̂0(X) is the first step in defining a
‘Simons–Sullivan model’ of the differential K -theory of Gillet and Soulé. The main
open problem is to describe the group operation directly in terms of the structured
bundles E . The group structure of the Simons–Sullivan model Struct(X) is given by
direct sums [14], which is no longer true for the group H K̂0(X). This is because in
general short exact sequences E do not split holomorphically. Even in the case when
they do, the issue of finding “structured inverses” remains a challenging problem sim-
ply because the proof that works in the smooth context breaks down for fundamental
reasons. One of the issues has to do with finding metrics whose Chern forms are of a
certain type. (See [11] for the discussion of a related question).

4.2 Bott–Chern forms for short exact sequences

Here we extend the computations in [3, Sect. 4] and present an explicit formula for
the Bott–Chern form for a short exact sequence E

0 −−−−→ F
i−−−−→ E

p−−−−→ H −−−−→ 0

of holomorphic vector bundles over X in the case when F is a line bundle. Specifically,
we consider the case when a Hermitian metric h on E defines a metric hF on F by
the restriction on i(F), and a metric hH on H—by the C∞ isomorphism between H
and the orthogonal complement i(F)⊥ of i(F) in E . In other words, there is a C∞
isometric isomorphism

f : E � F ⊕ H, f = i∗ ⊕ p, (4.4)

where ∗ denotes the adjoint map with respect to given metrics. The inverse map is
given by f −1 = i + p∗. We have i∗i = IF , pp∗ = IH —corresponding identity maps
in F and H , and i i∗ = PF , p∗ p = PH —corresponding orthogonal projections from
E onto i(F) and i(F)⊥. The canonical connection ∇ on (E, h) gives rise, respectively,
to the canonical connections ∇F = PF ◦ ∇ ◦ PF and ∇H = PH ◦ ∇ ◦ PH on (F, hF )

and (H, hH ) with the curvatures ΘF and ΘH . Denoting by ∇|F = ∇ ◦ PF restriction
on ∇ to F ⊂ E using (4.4), we get

∇F = ∇|F − A,

where A = −PF∇(PF ) + ∇(PF ) = PH ∇(PF ) is a (1, 0)-form with values in
End(F, H), called the second fundamental form of F in E (see, e.g., [7, p. 72]).
Correspondingly, A∗ = −PF∇(PH ) is a (0, 1)-form with values in End(H, F) and
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ΘF = Θ|F + A∗ ∧ A

ΘH = Θ|H + A ∧ A∗

(see, e.g., [7, p. 78]). Under the isomorphism (4.4), Θ|F = i∗ Θ i and Θ|H = p Θ p∗.
To compute

c̃(E ; h) = c̃(E ; h, hF , hH ),

in their paper [3] Bott and Chern introduced a linear homotopy of connections on E

∇u = ∇ + (u − 1)A, 0 ≤ u ≤ 1,

and in [3, Lemma 4.8] explicitly computed its curvature Θ(u) = ∇2
u . Using the

isomorphism (4.4) it is given by the following 2 × 2 block-matrix3

Θ(u) =
[
ΘF − u A∗ ∧ A i∗ Θ p∗

up Θ i ΘH − u A ∧ A∗
]

. (4.5)

Since

Θ(0) =
[
ΘF i∗ Θ p∗
0 ΘH

]
,

and Θ(1) = Θ , The Bott–Chern homotopy formula [3, Eqn. (4.13)] gives4

c̃(E , h) =
1∫

0

D(u) − D(0)

u
du, (4.6)

where D(u)—is the linear in λ term in det(I + κΘ(u) + λPF ), and κ =
√−1

2π
. This

is the main result of Section 4 of [3].
It is convenient to introduce generating functions ct (E, h) = ∑r

k=0 tkck(E, h) and
similar for the bundle (F ⊕ H, hF ⊕ hH ), so that

ct (E, h) − ct (F ⊕ H, hF ⊕ hH ) =
√−1

2π
∂̄∂ c̃t (E , h),

where

c̃t (E ; h) =
r∑

k=1

tk c̃k(E ; h, hF , hH ), (4.7)

since c̃0(E , h) = 0. In terms of generating functions (4.6) takes the form

c̃t (E , h) =
1∫

0

Dt (u) − Dt (0)

u
du, (4.8)

3 To compare with notations in [3], A = δ and u = et .
4 The subtraction of D(0) is equivalent to omitting the term a0 in formula (4.18) in [3].
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where

Dt (u) =
r∑

k=1

tk Dk(u),

and Dk(u) is linear in λ term in tr Λk(κΘ(u) + λPF ). Explicitly,

Dk(u) =
k∑

l=1

tr κΘ(u) ∧ · · · κΘ(u) ∧ PF ∧ κΘ(u) · · · ∧ κΘ(u), (4.9)

where in each term PF appears at the l-th place in the k-fold wedge product.
Formula (4.8) was re-derived by Mourougane [10]. It was observed there that when

F is a line bundle,

Dk(u) = tr Λk−1(κp Θ(u) p∗).

which can be easily seen by evaluating (4.9) in a local unitary frame e1, . . . , er of
the bundle E over U ⊂ X such that under the isomorphism (4.4) e1 spans F , and
e2, . . . , er span H . As it follows from (4.5), the corresponding generating function
takes the form

Dt (u) =
r∑

k=1

Dk(u)tk = t det(I + t̃(ΘH − u A ∧ A∗)),

where t̃ = κt . Now we can apply Lemma 5 and express c̃t (E , h) in a closed form,
using only the data given by the isomorphism (4.4).

Proposition 3 Let E be a short exact sequence

0 −−−−→ F
i−−−−→ E

p−−−−→ H −−−−→ 0

of holomorphic vector bundles over X, equipped with Hermitian metrics hF , h and
hH , where the metric hF on F is the restriction of the metric h on i(F) ⊂ E, and the
metric hH on H is defined by the C∞ isomorphism between H and the orthogonal
complement i(F)⊥ of i(F) in E. Let A be the second fundamental form of i(F) ⊂ E.
In the case when F is a line bundle, the generating function for the Bott–Chern forms
c̃t (E ; h), defined by (4.7), is given by the following explicit formula

c̃t (E ; h) = −tct (H, hH ) log

⎛

⎝1 +
√−1

2π

⎧
⎨

⎩tr

(
I +

√−1

2π
tΘH

)−1

t A ∧ A∗
⎫
⎬

⎭

⎞

⎠ .

Proof We have

det(I + t̃(ΘH − u A ∧ A∗)) = det(I + t̃ΘH ) det(I − ut̃(I + t̃ΘH )−1 A ∧ A∗).
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To apply Lemma 5, we use the local unitary frame e1, . . . , er described above. In
this frame End(F, H)-valued (1, 0)-form A is given by A(e1) = a2e2 + · · · + ar er ,
and End(H, F) valued (0, 1)-form A∗—by A∗(ei ) = āi e1, where ai ∈ A1,0(U ) and
āi ∈ A0,1(U ), i = 2, . . . , r . Thus A ∧ A∗ is represented by the (r − 1) × (r − 1)

matrix of (1, 1)-forms on U with matrix elements ai ∧ ā j , i, j = 2, . . . , r . Denoting
corresponding matrix elements of (I + t̃ΘH )−1 by θi j , i, j = 2, . . . , r , we get

det(I − ut̃(I + t̃ΘH )−1 A ∧ A∗) = det(I − ut̃ B), Bi j =
r∑

k=2

θikak ∧ ā j .

Since B2 = bB, where b = − tr B = − tr(I + t̃ΘH )−1 A ∧ A∗, using Lemma 5 we
get

det(I − ut̃(I + t̃ΘH )−1 A ∧ A∗) = 1

1 + ut̃ tr{(I + t̃ΘH )−1 A ∧ A∗} . (4.10)

Substituting (4.10) into (4.8) and integrating, we get the result. ��
As an application of Proposition 3, one can easily compute the Bott–Chern forms

of the metrized relative Euler sequence, originally derived via a rather intricate com-
binatorial analysis by Mourougane (Theorem 1 in [10]). We leave the details to the
interested reader. A link between this formula and the theory of Gillet–Soulé comes
in the form of Arakelov geometry and the computation of Bott–Chern forms on flag
manifolds [15]. This shall be explored in another paper.
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